
Technical Report No. 32-16 

Quantum Corrections to the Dispersion Relation of 
Longitudinal Oscillations in uyt Electron Plasma 

Oldwig uon Roos 

jpl 
J E T  P R O P U L S I O N  L A B O R A T O R Y  

C A L I F O R N I A  I N S T I T U T E  OF TECHNOLOGY 

P A S A D E N A ,  C A L I F O R N I A  

April 30, 1960 



National Aeronautics and Space Administration 

Contract No. NASw-6 

Technical Report No. 32-16 

QUANTUM CORRECTIONS TO THE DISPERSION 
RELATION OF LONGITUDINAL OSCILLATIONS 

IN AN ELECTRON PLASMA 

Oldwig von Roos 

/NJ* 
R. V. M e d b l i a n ,  Chief 
Phys i c s  Section 

JET PROPULSION LABORATORY 
California Institute of Technology 

Pasadena, California 
April 30, 1960 



Copyright 0 1960 
Jet Propulsion Laboratory 

California Institute of Technology 



Jet Propulsion Laboratory Technical Report No. 32- 16 

CONTENTS 

I.  Introduction ............................................................................................................................ 1 

II. Derivation of the Quantum Mechanical Collisionless Boltzmann Equation .................. 6 

I l l .  Linearization and Determination of Dispersion Relations .............................................. 10 

References 16 

Appendix 18 

........................................................................................................................................ 

............................................................................................................................................ 

iii 



Jet Propulsion Laboratory Technical Report No. 32- 16 

ABSTRACT 

In th i s  paper a n e w  equation is derived which  is 
a quantum mechanical analog of the c l a s s i c a l  col l is ion-  
l e s s  Boltzmann equation. To these e n d s  a new quantum 
mechanical distribution function i s  employed which is 
part icular ly  usefu l  i n  th i s  case. Quantum correct ions for 
longitudinal plasma osc i l la t ions  a re  eva lua ted  for a low 
dens i ty  p lasma and i t  is found that the lead ing  contribution 
(- f i 2 )  is due to exchange (Pauli-principle). 

1. INTRODUCTION 

A natural starting point for many investigations of quantum statistical mechanics i s  the 

use  of a so-called quantum mechanical distribution function (q.m.d.f.) (Ref. 1-5). Probably the 

best known example of a q.m.d.f. i s  Wigner's function (Ref. 6) defined by 

Here k = (rn/h) ( v )  is the wave vector and p is the (one particle) density-matrix. For 

simplicity of notation a one-particle description is used here, the generalization to N particles 

being straightforward. An analysis of the properties of Wiper's function will not be given since 

this has  been done elsewhere (Ref. 7,8).  However, it is pointed out here that F ( r , k )  a s  defined 

by Eq. (1) sa t i s f ies  an equation of motion which is similar to the classical Liouville equation 

for the classical  probability distribution in phase space. In fact, the equation satisfied by 

Eq. (1) goes directly over into the classical Liouville equation in the limit of ti = 0. Mean values 

of observables may be obtained from F in many cases by simply treating F as if i t  were a clas- 

s ical  probability function. For instance, integrating Eq. (1) over all k space yields immediately 
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the diagonal element of the density matrix which is the (observable) particle density in config- 

uration space 

It i s  emphasized, however, that F is not an observable-which, of course, i t  cannot be since 

this would put i t  a t  variance with the exclusion principle. F i s  merely a calculational aid very 

much like the wave function. 

Independently found by the author, yet already briefly mentioned in the literature 

(Ref. 9), is the following q.m.d.f.: 

3 -- * 
F ( r , k )  = (277) $ J ( r ) c * ( k ) e - i k "  

Here c* (k )  i s  the complex conjugate of the Fourier transform of the wave function 

Equation (3) i s  valid for a pure state. For a mixed s ta te  there i s  

with $J,, a complete system and on the probability of occurrence of the nth state. The q.m.d.f. of 

Eq. (5) has  already been successfully employed by the author (Ref. 10) to disentangle internal 

and external degrees of freedom in the Liouville equation for a gas consisting of complex mole- 

cules. I t  i s  seen in Section I1 that the requirements of indistinguishability of N particles may be 

met in a very simple way by F. This  fact constitutes the real advantage F has  in this particular 

problem. Before proceeding to the main object of this  paper, that is, the derivation of an equation 

for the collective motion of an electron plasma and the subsequent determination of a dispersion 

relation for this motion, some of the basic properties of F will  be briefly quoted. 

* * 

* 

k 

(1) The Liouville equation satisfied by F, which is easily obtained from the 

definition of Eq. (3), together with the Schrodinger equation for $J: 
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cc, 

(3) The  integral of any function of r and k, G (v, &),with F over all phase space  

i s  equivalent to the quantum mechanical mean of the so-called well-ordered 

product (Ref. 9). In other words if 

then 

so that the momentum operator always ac t s  on the right of the conjugate 

position operator. 

(4) The particle density i s  given by: 

and 

cc, 

that  is ,  the integration of F over half of the phase space yields the p r o b  

ability distribution of the conjugate space. The  analog does not always 

hold in more complicated cases.  For instance f i  I k  F d3k i s  not the current 

density j .  But it i s  easy to show that 

cv 

where R { 4 }  means the real part of 4. 

In Section I1 of this paper an equation will be derived for the singlet distribution function1 
cv 
F ( u , k , t )  of an electron plasma by employing essentially the same statist ical  arguments of those 

used in the derivation of the Vlasov equation (Ref. 11). In Section 111 the equation obtained will be 

'Singlet, doublet, etc., distribution functions for an N body system are here of course defined in 
the same way as u s u a l  (see Sect. 11). 
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linearized. The first case then to be considered is the case of distinguishable particles. Solutions 

- e  i ( k * r - o t )  will be seen to exhibit the same dispersion relation as the “plasmons” introduced 

by Bohm and P ines  (Ref. 12). Subsequently the dispersion relation of density fluctuations 

- e  i ( k * r - w f )  will be obtained for the case of fermions with due regard to exchange in lowest order 

of a perturbation expansion with respect to A o p / K T  (the ratio of a “plasma quantum” to the 

thermal energy, up being the classical plasma frequency: a’ = (47re2iV)/ m). It will be shown 

that the leading contribution to the dispersion relation is due to exchange in this case. 
P 
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II. DERIVATION OF THE QUANTUM MECHANICAL 
COLLISIONLESS BOLTZMANN EQUATION 

The starting point of the derivation i s  Eq. (7) which will be written here for an N electron 

system: 

The  coulomb potential of the electrons has already been explicitly introduced. The fact that 

only the electron distribution function in Eq. (18) i s  considered implies that the ions are treated 

as an immobile background, homogeneously distributed, which does not disturb the electron distri- 

bution, with the only purpose to neutralize the space charge in thermal equilibrium. The singlet, 

doublet, and related distribution functions are defined as usual by: 

The integration takes place over all phase space of N-S particles as indicated by 

( d 3 r d 3 k ) N - S  in  formula of Eq. (19). An equation for the singlet distribution function i s  obtained 

by integrating Eq. (18) over all sets of coordinates r 

observing the fact that F, i s  symmetric with respect to interchange of r i ,  k i  with any r i , k i ,  and 

discarding surface integrals in the usual fashion the following equation i s  obtained: 

k .  but one. Performing th is  operation, i '  1 

6 
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Here N is the number of particles per cm3. Equation (20) is not a closed equation. I t  entirely 

corresponds to the first equation of the B-B-G-K-Y hierarchy of equations in classical  statistical 

mechani\cs2. In order to close Eq. (20) F, may be expressed as a functional of F,. Turning for a 

moment to the classical  case,  the collisionless Boltzmann equation is obtained by merely replac- 

ing Fz by a product of F,  functions (see Ref. 11). This, of course, is equivalent to saying that 

the correlation between the particles is negligibly small. The same conclusion cannot be drawn 

immediately for F2 of Eq. (20) since it i s  not an observable. However, it  i s  rather obvious that a 

neglect of correlation means in this case that the wave functions which determine F2 may be 

expressed by a product of properly symmetrized single particle functions in the case of indistin- 

guishable particles. With this assmption it is easily shown that the following formula holds: 

ry cc, 

cc, 

cc, 

cc, .-b cc, 

F2 ( I ,  r ', k ,  k ' t )  = (1  + E )  F ,  ( r ,  k ,  t )  F ,  ( r  ', k ', t )  

with 

E = O  for distinguishable particles 

(21 b) E =  f e  - i ( k - k ' ) * ( r - r ' ) p k  k ,  + sign for bosons 
- sign for fermions 

Pkk' is the permutation operator defined by Pkk' $(&, k ' )  = $ ( k : k ) .  Equations (21a) and (21b) are 

proven in the appendix. A comparison of Eq. (21) with the equivalent formulation for the Wigner 

function in Eq. (1) as given by Ross and Kirkwood (Ref. 13) reveals the advantage of the q.m.d.f. 
of Eq. (5)  over Eq. (1) i n  t h i s  case. A closed equation is now obtained from Eq. (a), using 

Eq. (21), for the motion of a quantum plasma which is the direct analog of the Vlasov equation 

(Ref. 14). It is, dropping the index 1 of the singlet distribution function: 

i e 2 N  -ivr-vk - 1) 
2rn 3" R 

a *  
at rn 
- + - k - vr - i ~ Vr F ( r , k , t )  = - 

(22) 

This  set of equations has  been derived independently by Bogolubov, Born and H. S. Green, 
Kirkwood and Yvon. 

7 
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In order to simplify Eq. (22), the normalization from k space to velocity space is now being 

changed by requiring that 

Dropping the prime again i t  is noticed that the exchange term on the right hand side of Eq. (22) 

may be written a s  (using Eq. (21b) and the substitution m/ti  (v  - v ’ )  = u) 

Here the position coordinate r is distinguished in the potential by an index since the gradient 

Vr in Eq. (22) only operates on the potential. The formula in Eq. (24) may be simplified by using 

the Fourier transform in velocity space for F defined by 
- 

Expressing the first d.f. on the right-hand side of Eq. (24) with the aid of Eq. (25) i t  i s  seen that 

Operating now with exp (-iVr . Vk) - 1 on the expression of Eq. (26) yieIds, by using the formula 

of Eq. (91, - - 1 ) Jd3r 1 3 1  d u E - F ( r ,  v ,  t )  F(r,’v,’t) = 

8 
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In the last expression the index of r was dropped since it is not necessary any longer. 

The integration over X is straightforward and for the exchange part of Eq. (22) the following 

final expression is obtained: 

-iQ Q -1 -v % * ( e  r' - 1) J d 3 r ' d 3 u ' l r  - r ' 1  ' E  x F ( r ,  v, t )  F (r,' v,' t )  = 
R 

R 1 P - v  f i  
2 rn 

I ,  V ,  t )  - -Jd3,' F ( r  + - I ,  v , ' t)  

2 772 J v  - v q  

where P means the principal value for the integration over v.' The f sign refers to the two cases: 

bosons (+) or fermions (-). The first term on the right-hand side of Eq. (22), that is, the term 

without the exchange operator E,  can be handled in an analogous fashion. The fairly simple 

calculations are not reported here, but the result is quoted. The equation satisfied by F ( r ,  v, t)  is 

2m 

e 2  N -v 1 P 
A 2 7r2 lb2 

= i - Jd3r 'd3u'F(r , 'v , ' t )  - 1 d 3 u -  

r 1 

f is defined by Eq. (25). Equation (!B) is the starting point for the investigations of the 
quantum plasma. I t  is the quantum mechanical analog of the collisionless Boltzmann equation. 

a. 

Two properties of Eq. (29) are established immediately: (1) If 
( F  = F ( v ) )  then Eq. (29) is identically satisfied. (2) By taking the l imit  h = 0 Eq. (29) goes 
directly over into the classical  collisionless Boltzmann equation (Vlasov equation, Ref. 14). 

is solely a function of velocity 
- - v  

9 



Technical Report No. 32-16 Jet Propulsion Laboratory 

111. LINEARIZATION AND DETERMINATION OF DISPERSION RELATIONS 

Equation (29) constitutes a rather difficult integral equation. The problems of most 

physical interest,however, are those in which the overwhelming majority of particles i s  in 
thermal equilibrium. Equation (29) i s  therefore linearized by putting 

and considering F ,  << Fo so that t e rns  quadratic in F,  may be neglected. Specifically, i t  i s  

assumed: 

Fl(r, v ,  e) = U ( K ,  v ,  t )  e iK . r  (31) 

Entering Eq. (29) with this expression and neglecting terms of order higher than the first in u 
yields the following equation: 

r 1 

4 n e 2 N  1 
= i ~ - J d 3 v ' u ( K ,  v, ' t )  

R K 2  

The last  t e n  of Eq. (32)  i s  due to exchange. For distinguishable particles i t  must be omitted. 

Furthermore, in this  case Fo(v) is assumed to be the Maxwell-Boltzmann distribution 

m 

2 k  T 
E = -  ( 3 3 )  

10 
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The equation governing the motion of the Fourier transform of Eq. (31) of the perturbed distribution, 

in the case in which the particles may be considered distinguishable, reads then: 

( + + i K . v + i -  t ” 2 )  2 m  a ( K ,  v ,  t )  

(34) 

= iug 2 .-!- [. (v + K) - Fo(v ) l  S d 3 v ’ a ( K ,  v,’t) 
li K 2  

The classical plasma frequency was introduced 

w p  

A solution of Eq. (34) i s  easily possible by employing a Laplace transformation with respect to 

time in exact analogy to Landau’s procedure (Ref. 15). These calculations are not performed here 

since th i s  would essentially mean a repetition of Landau’s calculations. However, a dispersion 

relation for plasma oscillations i s  found from Eq. (34) by assuming a time dependence of u in the 

form 

Inserting Eq. (36) into Eq. (34) i t  i s  found,after division by i ( - ~  + K - v + l r K 2 / 2 m )  and inte- 

gration over v, that: 

2 m  

which leads, after a simple substitution, to the dispersion relation 

Fo (VI 
1 = w2 [ d 3 v  P 2 

(w - K - v ) ~  - (g) ( 38) 

11 
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This relation i s  the same a s  that obeyed by the “plasmons” of Bohm and P ines  (Ref. 12). 
Two remarks of caution should be made a t  this point. First, i t  i s  known that a, being the Fourier 

transform of F ,  (Eq. 31), is not, in general, an observable. So i t  seems that a dispersion relation 

a s  Eq. (38) is somewhat artificial. However, Eq. (15) of the introduction shows that a simple 

integration over the velocity space is all that is needed to generate an observable f r m  a, in this  

instance the density distribution. But this integration does not affect the spatial and temporal 

dependence. In other words, the (observable) density distribution displays the very same fre- 

quency versus wave-vector relationship as the (unobservable) perturbed q.m.d.f. does. Secondly, 

the integral in Eq. (38) is, strictly speaking, not defined because of a singularity for those values 

of v for which the denominator vanishes. This poses  a problem which has been investigated by 

various authors for the classical case (Ref. 16). A detailed analysis cannot be entered into here 

but i t  is pointed out that the proper choice for integration in Eq. (38) is to take the principal 

value, and that, strictly speaking, all solutions - e i (k * r -o t )  are damped, but this  damping is 

particularly small if Eq. (38) is satisfied. 

Now turn back to Eq. (32). The aim is to obtain the quantum corrections in lowest 

order to the classical dispersion relation valid for an electron plasma of low density. In order to 

do this, a and Fo are expanded in powers of h by writing: 

The Fermi distribution i s  now taken for Fo(v): 

2 

N 
- 

Since the classical limit is obtained in Ref. 17 for ~‘-ra, the expansion in powers of h i s  found 

correct to order .ti3: 

12 
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3 - 
(41) 

with E from Eq. (33). Inserting Eq. (39) 

gives the following set of equations: 

(-uo + K - v)&  

and (41) into Eq. (32) and comparing equal powers of h 

Equation (42), being of order fro, is ,  of course, just the classical Vlasov equation from which is 

obtained the well known classical dispersion relation for a0 

13 
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From Eq. (43) it  follows, by observing Eq. (42) and (45), that 

w1 = 0 (46) 

There are no effects to first order in A. I t  is a matter of simple algebra to show subsequently, by 

utilizing Eq. (42), (43), (45) and (a), that w 2  from Eq. (44) is given by: 

K * (VI-V) K * V V : , F ( v ' )  K Vu F ( v )  - 2  - 1 d 3 v d 3 v ' ( v - v ' I  
2m2K2 (wo - K . ")2 (wo - K - v') 

This, then, is the first non-vanishing quantum correction we were looking for. The 
expression of Eq. (47) may be simplified considerably by noting that interest l i e s  mostly in 

density distributions which are spread out over regions considerably larger in volume than Ai 
where A, = 4- i s  the .Debye-Hiickel length. In this case,  an expansion in the powers 

of K is allowed. T h i s  expansion yields for the classical  dispersion relation of Eq. (45) the well- 

known result 

r 1 

L J 

To lowest order in K Eq. (47) then leads to: 

This integral can be done in an elementary manner with the result: 

14 
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so that the final result is 

The quantum correction exhibited by Eq. (51) i s  really a very small correction. Even 

when %up = kT,that is, a t  electron densities of about 1015 particles per cm3, and at room 

temperature, this  correction i s  an order of magnitude smaller than the classical correction of 

Eq. (48). 

In conclusion, i t  should be pointed out that Eq. (32) (the linearized collisionless 

Boltzmann equation for the quantum distribution function) is felt to be a good approximation also 

for a high density electron plasma-that of a metal for instance. The neglect of collisions should 

not be a deterrent for actual applications of Eq. (32) since the Paul i  principle vastly inhibits 

collisions. 

15 
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APPENDIX 

Here it is wished to prove the relationship of Eq. (21) which expresses the doublet 

distribution function by singlet functions in case of negligible interactions. The definition of 

Eq. (5 )  for F may be written specifically 
.-u 

Here up i s  a s e t  of quantum numbers for a two-electron configuration. The singlet distribution 

function is given by: 

(A-2) 
a 

Under the assumption of no interaction, the two-particle wave function IC, may be expressed by 4 

(A- 3) 

and a similar expression for c 

cap into (Eq. A-1) gives the desired result provided that 

( k ,  & '). Inserting (Eq. A-3) and the analogous expression for ab * 

namely 

where the * sign refers to bosons (fermions). The expression of Eq. (A-4) i s  of course true if 

particle interactions are neglected. 
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